

Autonomous vehicles in France : where do we stand today and first insights of socio-economic assessment in Social

Nadège Faul and Jaâfar Berrada ECAV Symposium, November 24th 2020

NEW METHODOLOGY FOR MULTI ADL4 FOT

Common assessment methodologies

Common descriptions : Use cases, Service description, Data framework

Results

12 Assessment domains 60 level 1 research questions 77 KPIs identified More than 200 data models

0-----0 MICRO

 \bigcirc MESO MICRO 8. Traffic impact 7. Acceptance How does an AV fit in with the traffic in real 3. Traffic modelling How is the service received conditions? by its users and by other What are the 10. Governance road users? consequences of their TRAFFIC target service deployment How is the AV deployment MEASUREMENTS in terms of traffic organised locally and on the national level? INTENTION TO USE SERVICE NDERS' UNDERSTAND OF DIFFICULTIES & SERVICE EFFICIENCY FOR USERS

Confidential C

0

MACRO

Methodologies for demand analysis

OVERVIEW

Simulation model						
Agent-based model (VIPSIM) coupled to macroscopic model (VISUM)	Agent-based model (MATSIM)					
Target service						
 + Assessment of socio, eco and env impacts + Spatial and temporal upscaling + Representation of impacts ⇒ Model Development ⇒ Model Calibration 						
 Socioeconomic Impacts Mode share evolution ⇒ Specific period of the day and a specific travel purpose. 	 Socioeconomic Impacts Mode share evolution ⇒ Activities of the day 					
General/Aggregated Person/Desaggregated						
	Agent-based model (VIPSIM) coupled to macroscopic model (VISUM) Target + Assessment of socio, eco and env + Spatial and temporal upscaling + Representation of impacts ⇒ Model Development ⇒ Model Calibration • Socioeconomic Impacts • Mode share evolution ⇒ Specific period of the day and a specific travel purpose.					

MICROSCOPIC SIMULATOR OF AUTONOMOUS TAXIS : VIPSIM

- VIPSIM (Vedecom Integrated Passenger transport SIMulator) is a microscopic agentbased simulator developed par VEDECOM to describe a shared autonomous taxi service, in particular :
- Movements and interactions of vehicles and passengers.
- **Relocation** strategies of **empty** vehicles.
- Ridesharing strategies.

ARCHITECTURE OF THE SIMULATOR VISUM – VIPSIM

MODEL ASSUMPTIONS

• No regulation

- Production costs based on the literature: per vehicle:
 - Fixed Costs +: 50€ per day per taxi
 - Variable costs: 0,4€ par km

+ Supposant le coût d'achat à 36000 € par véhicule et la durée d'amortissement 2 ans

Demand estimated from surveys

- Utility parameters
- Mode preference
- Origines and destinations

Application case : Saclay

MOBILITY CHARACTERISTICS

SUPPLY

- Road Infrastructure : 645 km
- Four major axes: Highway A10, National route 118 et 2 Departmental routes
- 12 bus lines, 1 BRT bus line
- 2 train lines

DEMAND

Imbalance of population and jobs

o 33000 inhabitants vs 22000 jobs *(insee, 2017)*

- High exchanges with Paris and neighbor cities
- 78% of active inhabitants in Sacaly are working outside of Palaiseau (insee, 2017)

AV SERVICE

• An Autonomous taxis service is proposed in order to enhance the current PT supply.

It uses the **BRT infrastructure** while offering in addition a **feeding service**.

OPERATIONAL PERFORMANCES

Indicateurs de performance techniques	Valeur
Mean waiting time	3 minutes
Maximal waiting time	19 minutes
Mean travel time	3 minutes
Mean trip distance	4 km
Mean distance per vehicle (for one peak hour)	22,5 km
Mean loading rate of vehicle	1,4
Empty vehicle kilometers	70 %

Modal share	Public transport			Motorized modes	
	aTaxis	BUS	aTaxis+BUS	Public transport	Car
Before	0%	100%	0%	32.8%	67.2%
After	21%	30%	49%	42.0%	58.0%

_ _ _ _ _ _ _

IMPACT OF FLEET ON PROFIT FOR A FIXED FARE (2€)

IMPACT OF FLEET SIZE AND FARE

Social surplus

Profit

NEXT STEPS

• Different methodologies for the evaluation of a multi-service and multi-environment projects.

- o Connections between methodologies established and a FESTA methodology consolidated.
- Three methodologies identified for demand analysis, allowing to address different scales of analysis.
- The simulation approach will allow to evaluate future upscaled scenarios, but calibrated on experimental observations, conducted surveys, etc. with different projection scenarios.
- Coupling an agent-based model and a macroscopic model achieved, allowing to optimize operating conditions.

Thank you for your attention

contact@projet-sam.org

SAM Coordinator : <u>jean-francois.sencerin@pfa.fr</u> SAM global methodology and impact assessment: <u>nadege.faul@vedecom.fr</u> SAM FESTA adaptation : <u>hassan.mahdavi@vedecom.fr</u> SAM Demand evaluation : <u>jaafar.berrada@vedecom.fr</u>